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Abstract. We study the infinite-dimensional symmetric periodic Anderson model within the
selfconsistent second-orderU -perturbation treatment, which is a conserving approximation and
the simplest systematic improvement of the Hartree approximation. It is shown that the
symmetric model exhibits an antiferromagnetic phase. The phase diagrams, the order of the
phase transition and the density of states in the antiferromagnetic and in the paramagnetic phase
are calculated and compared with the results obtained using the Hartree–Fock approximation.

1. Introduction

It was established a few years ago that the selfconsistent second-order perturbation treatment
(SOPT) of the periodic Anderson model (PAM) in the limit of infinite dimensions is capable
of reproducing qualitatively several of the characteristic properties of heavy fermions [1, 2].
This includes the many-body (Kondo) temperature scale, the gradual crossover from a high-
temperature region of incoherent scattering to a coherent ground state which has heavy-
quasiparticle excitations with long lifetimes near the Fermi surface, and the temperature
dependence of quantities such as the specific heat, static magnetic susceptibility, resistivity
and thermopower. Even though the temperature scale is not as expected, it appears to give
a qualitatively correct picture of the physics of the homogeneous phase, even when the local
Coulomb interaction, which is treated as a perturbation, cannot be considered small.

The selfconsistent SOPT is the simplest extension to the Hartree approximation (HA)
that is still a conserving approximation. Since these are resummations to infinite order of the
perturbation series for the grand canonical potential these approximations can in principle
be valid also for large interactions. Both approximations might, however, be considered
as truncated perturbation series for the8 potential in the Kadanoff–Baym formalism (see
[3]) (for fixed propagators), and in the absence of other small parameters they would not
be expected to work very well unless the Coulomb repulsion is small. When the SOPT is
nevertheless able to incorporate such nontrivial features over a wide temperature range in a
single theory for the homogeneous phase, it is natural to ask what it will predict for other
phases.

To complete the above picture one needs to consider the possibility of magnetically
ordered phases in certain regions of the parameter space. This is expected from theoretical
treatments of the model in the literature. Leder and Mühlschlegel [4] considered the
magnetic phases in the PAM using the Hartree(–Fock) mean-field theory. They used a
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flat model conduction band density of states and found magnetic phases in a variety of
parameter regimes. For the symmetric model they found the stable solutions to be either
homogeneous or antiferromagnetic. The phase transition between the AF and homogeneous
phase was found to be continuous. For other filling fractions they found more complicated
situations including a ferromagnetic phase as well. The ground state of the symmetric
PAM in one, two and three dimensions was discussed by Yamada and Yosida [5]. Apart
from Hartree mean-field theory they used second-order perturbation theory with Coulomb
repulsion for the homogeneous phase of the symmetric model, but their argument in favour
of AF long-range order in three dimensions was by analogy to the s–d model. A slave-boson
study by M̈oller and Ẅolfle [6] confirms the above picture of a continuous AF transition
for large enough repulsion with half-filled bands. For other filling fractions spiral magnetic
phases are stable down to quarter-filled bands for which the ground state is ferromagnetic.
Recent quantum Monte Carlo simulations for the symmetric model in infinite dimensions
show the same tendency towards AF ordering [7, 8].

In the light of the above discussion it is interesting to consider the AF phase transition in
the PAM within the selfconsistent SOPT. Apart from partially completing the SOPT picture
of the PAM, it should be able to provide information on the density of states (DOS) in the
low-temperature AF phase, which it is not feasible to obtain from quantum Monte Carlo
simulations, as well as the low-temperature phase diagram. Furthermore, in comparison
with the case for the HA, it is possible to make statements regarding the role of fluctuations
in determining the phase diagram and the properties near the transition.

In the following section we present the model and consider the Hartree approximation
which already gives a qualitative picture of the phase diagram and serves as a guide for
interpreting the SOPT results. The HA is useful because it allows for analytical calculations.
The SOPT results are presented and discussed in section 3. The paper is closed with some
concluding remarks in section 4. We set ¯h andkB equal to unity throughout this paper.

2. Basic equations and the Hartree approximation

We consider the simplest form of the PAM with only a spin degeneracy of the localized
f-electron states, a simple tight-binding conduction band and only on-site hybridization
between the conduction and f electrons. In our notation the Hamiltonian reads

H = − t√
2d

∑
〈r,r ′〉,σ

c†
r,σ cr ′,σ + V

∑
r,σ

(f †
r,σ cr,σ + c†

r,σ fr,σ )

+Ef

∑
r,σ

f †
r,σ fr,σ + U

∑
r

f
†
r,↑fr,↑f

†
r,↓fr,↓ (1)

wherecr,σ (c†
r,σ ) annihilates (creates) a conduction band electron with spinσ at siter of the

d-dimensional hypercubic lattice andfr,σ (f †
r,σ ) is the similar operator for the f electron.

The scaling of the hopping matrix element−t/
√

2d ensures a nontrivial limit whend → ∞
[9]. The local Coulomb repulsion is denoted byU , andV is the hybridization. Since we
consider only the symmetric PAM, the local f level is atEf = −U/2 and the chemical
potentialµ is pinned to zero.

In the limit of high dimensions the selfenergy becomes site diagonal [9], but it may
depend on the siter. Here we allow for an antiferromagnetic ordering in a hypercubic lattice,
so the selfenergy’s spatial variation can only depend on the sublattice. We will, without
loss of generality, assume that the spontaneous (staggered) magnetization will occur parallel
to the spin quantization axis such that the one-particle Green function and selfenergy are
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spin diagonal. Furthermore we have by symmetry that the up-spin f-electron selfenergy
on one sublattice is equal to the down-spin selfenergy on the other sublattice. Together
these simplifications imply that we need only consider the site-diagonal matrix elements
of the Green function and selfenergy on one of the sublattices. We can therefore drop the
coordinate indices, but keep spin, time (or frequency) and particle (c or f ) indices. The
selfenergy has nonzero matrix elements only between f-electron states, so for this quantity
we will not write the particle indices explicitly.

On an AB lattice the site-diagonal matrix elements of the Green function read

Gcc
σ (z) =

(
zc − V 2

zf,−σ

)
g0(Z)

Z
(2)

Gff
σ (z) = 1

zf,σ

(
1 + V 2

zf,σ

Gcc
σ (z)

)
(3)

where

zc = z + µ (4)

zf,σ = z + µ − Ef − 6σ(z) (5)

Z =
√(

zc − V 2

zf,↑

)(
zc − V 2

zf,↓

)
. (6)

The quantityg0 is the Green function for tight-binding electrons on a hypercubic lattice of
infinite dimension:

g0(z) = −i

√
π

2t2
sgn(Im z) exp

(
− z2

2t2

)
erfc

(
−i

sgn(Im z)z√
2t2

)
(7)

and corresponds to a Gaussian DOS. It is convenient to split the f-electron self-energy into
instantaneous (Hartree) and frequency-dependent (correlation) parts:

6σ(z) = 1

2
nf U − σmf U + 6c

σ (z). (8)

In the symmetric PAM the f-electron filling fractionnf = 1 and the spin-independent Hartree
contribution will cancel againstEf in all equations. The staggered f-electron magnetization
per sitemf is given by

mf = T

2

∑
n

(
G

ff

↑ (iωn) − G
ff

↓ (iωn)
)

(9)

where ωn = (2n + 1)πT denotes the Matsubara frequencies (T is the temperature).
Assuming a continuous phase transition one can look for the parameter values that give
a divergent antiferromagnetic susceptibility in the homogeneous phase. This occurs when

1 = T
∑

n

g(iωn) (10)

where

g(z) = lim
mf →0

G
ff

↑ (z) − G
ff

↓ (z)

2mf

. (11)

When 6c
σ is explicitly given as a functional ofGff

↑ and G
ff

↓ in equation (8) one can
solve equations (3)–(9). Besides the Hartree approximation6c

σ = 0 we will here employ
self-consistent second-order perturbation theory in which the selfenergy is given (in the
imaginary-time representation) by

6c
σ (τ ) = −U2Gff

σ (τ )G
ff
−σ (τ )G

ff
−σ (−τ). (12)
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When there are magnetic solutions of the selfconsistent equations they always appear in
pairs as required by symmetry and one always finds a homogeneous solution. To judge the
stability of the solutions it is then convenient to add to the Hamiltonian a termHext with
an external staggered fieldh coupled linearly to the f-electron spin:

Hext = −h

2

∑
r

(−1)
∑

i |ri |(f †
r,↑fr,↑ − f

†
r,↓fr,↓). (13)

One can still find several solutions in some ranges ofh, such thatmf = mf (h) is
multivalued, but when inverting the different branches of solutions one can construct a
hypotheticalh = h(mf ) isotherm which is single valued. For high temperatures it is a valid
physical isotherm and for low temperature we obtain a physical isotherm from a Maxwell
construction.

Equation (10) above can be converted to real frequencies as

1 =
∫ ∞

−∞
dω f (ω)ρg(ω) (14)

wheref is the Fermi functionf (x) = 1/(exp(x/T )+ 1) andρg(ω) is the spectral function
of g(ω) from equation (11). In the Hartree approximation it reduces to

1 = −U

∫ ∞

−∞
dω f (ω)

2ω2 − V 2

ω(ω2 − V 2)
ρ0(ω) (15)

where the integral should be understood as a principal value and

ρ0(ω) = V 2

ω2
exp

(
− 1

2t2

(
ω − V 2

ω

)2) /√
2πt2 (16)

is the f-electron spectral function forU = 0. The integral is finite, and can be evaluated
exactly forT = 0, so there is a critical valueU = Uc at which AF order sets in:(

Uc

t

)−1

= e(V/t)2

[
K1((V/t)2) − 1

2
K0((V/t)2)

] /√
2π . (17)

Kn(x) is a modified Bessel function (see [10]).
In the limit of largeV/t we haveUc ∼ 4V . To obtain the AF phase,U will then be

the largest parameter in the Hamiltonian, and we cannot expect our approximation to be
valid. For small hybridization we obtainUc ∼ √

2πV 2/t . In this limit we can also find a
relation between the dimensionless critical temperatureθ = tTN/V 2 and u = U/Uc near
u = 1, θ = 0:

u − 1 =
√

8π

3

(
1

θ

)1/3

exp

(
−3

2

(
1

θ

)2/3)
. (18)

Thusθ drops very quickly to zero whenu → 1+.
For u < 1 the system is in the homogeneous phase and the Hartree electron spectral

functionsf andc are identical to the noninteracting ones. See the example in figure 1—it
shows two subbands separated by a hybridization ‘gap’. The gap is not a true gap, as can
be seen from equation (16), but the DOS is zero at the Fermi level and dies exponentially
as it is approached. This is an artifact of hypercubic lattices in high dimensions. When
the spontaneous symmetry breaking occurs, the Brillouin zone halves, and each subband
breaks into two new subbands, with inverse-square-root divergencies at one of the gap
edges as in figure 1. The gap around the Fermi level now becomes a true gap with edges at
ω = ±mf U . The other band edges are located atω = ±mf U/2 − √

(mf U/2)2 + V 2 and
ω = ±mf U/2 + √

(mf U/2)2 + V 2.
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Figure 1. Hartree f-electron spectral functions forV = 0.4t . Dashed line: the homogeneous
phase (like a noninteracting one). Solid line: the antiferromagnetic phase withmf U = 0.05t .

3. Numerical SOPT

To judge the effects of fluctuations we have investigated the instabilities towards AF
ordering numerically within the SOPT approximation described in the previous section.
The finite-temperature calculations were done in the Matsubara frequency or imaginary-
time representation. The high-frequency tails of the Green functions and selfenergies were
then approximated by terminated continued fractions that are exact (for SOPT) up to and
including the third and first moment respectively. Spectral functions and selfenergies for
real frequencies were calculated directly for real frequencies. In both cases FFT methods
were employed, together with interpolation techniques to ensure correct results for the
highest frequencies stored. Cubic spline interpolation was used for transformations from
imaginary time to Matsubara frequencies, and simple linear interpolation for the real-
frequency calculations. In the latter case the staggered magnetization from a Matsubara
frequency calculation was used as the input to the calculation.

Figure 2 shows the temperature of the divergence of the AF susceptibility as a function
of U/t for various values ofV/t . The form is qualitatively what one could expect from
the Hartree result. ForU smaller than someUc(V ) there is no AF phase, whereas for
U > Uc the susceptibility diverges for some temperatureTc, and the system must be in
the AF phase below this temperature. When the f electrons order antiferromagnetically, so
do the conduction electrons, but with the opposite direction of the moments on the same
site. BecauseTc goes to zero so quickly whenU → Uc, we can estimateUc = Uc(V, t)

from these calculations just by taking the result for some low enough temperature; see also
below. Using these results we have also checked the quantity ln(θ3(u−1)) versusθ−2/3 for
various values ofV/t in the range 0.02–0.4 (not shown here). The dimensionless quantities
θ andu are the same as in the previous section, but using the SOPTUc in the definition of
u. We find a linear dependence within the numerical accuracy. Thus the relation between
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Figure 2. The temperature where the antiferromagnetic f-electron susceptibility diverges.

u and θ appears to be the same as for the HA (see equation (18)), except for the changes
in scale. The linear behaviour ofTc as a function ofU/t for large values of this parameter
is contradictory to recent QMC results [7, 8] which show a decreasingTc for large U/t .
The SOPT does not reproduce this behaviour—which is not surprising, as the SOPT is a
weak-coupling expansion for smallU/t and does not properly describe the strong-coupling
limit of large U/t .

In order to check whether or not the predicted phase transition really is continuous we
have calculatedh = h(mf ) isotherms for various values ofU andV . Upon lowering the
temperature the AF phase becomes more stable at zero field than the homogeneous phase,
and this happens at a temperature (Tc ≈ 0.0072t for U = V = 0.2t) which is larger than
the critical temperature determined from the condition that the (zero-field) susceptibility
diverges. Therefore, the transition found here within the SOPT must be first order as
indicated in figure 3. Actually it is first order for a wide range of parameter choices except
possibly forU very close toUc or for V/t larger than the values that we have considered.
This is similar to the prediction of the SOPT for the Hubbard model [11] for large enough
U . First-order transitions have not been obtained within other investigations of AF for the
PAM in finite dimensions mentioned in the introduction. Therefore, one cannot exclude
the possibility that the first-order transition may be an artifact of the SOPT, though to our
knowledge there is no rigorous argument against the existence of AF first-order transitions.
Even if it is an artifact, this means only that the SOPT fails to describe the finite-temperature
phase transition correctly, but it does not remove the approximation’s relevance to the low-
temperature ordered phase or to the homogeneous phase.

The zero-temperature phase diagram arising from extrapolating theTc-curves discussed
above is shown in figure 4. For smallV/t the ratioUct/(

√
2πV 2) does not approach unity,

but is rather about 1.5. The dependency onV/t is also much stronger in the case of the
SOPT than for the HA. Thus the fluctuations quantitatively influence the phase diagram
considerably, and are nowhere negligible along the phase transition line.
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Figure 3. The staggered f-electron magnetization,mf . Solid line: SOPT solutions toh(mf ) = 0.
Dotted line: the first-order transition.

Figure 4. The critical interactionUct/
√

2πV 2 versusV/t . Solid line: the SOPT. Dashed line:
the HA.

Figures 5 and 6 show the f-electron DOS and selfenergies respectively of one sublattice
for two temperatures, one above and one below the phase transition, whenU = V = 0.2t .
In the ordered phase the most apparent difference from the HA spectral function is that
the inverse-square-root singularities have disappeared completely and the additional gaps
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Figure 5. The f-electron DOS forU = 0.2t , V = 0.2t .

Figure 6. The f-electron selfenergy forU = 0.2t , V = 0.2t .

are smeared out. If one looks at the selfenergy it is clear that this effect is simply due to
the finite lifetime resulting from the selfenergy imaginary part, which is finite even at zero
temperature this far away from the Fermi level in the central gap. The temperature is quite
low, the staggered magnetization is almost saturated and the gap around the Fermi level is
quite distinct. Therefore the state should be representative for the low-temperature phase
including the ground state, and the smearing is not a finite-temperature effect. Comparing
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to the homogeneous phase we see that apart from the obvious shifting of spectral weight to
the lower subband there are some structures left that are not present in the homogeneous
solution and can be attributed to the symmetry breaking.

4. Concluding remarks

In summary we have investigated the symmetric PAM, which is a model relevant for the
description of heavy-fermion systems. Treating the PAM within the Hartree approximation
and within its simplest systematic improvement we investigated if and where AF solutions
are obtained. DefiningTc as the temperature where the susceptibility diverges, we calculated
the dependence ofTc on the model parameters, finding a vanishingTc below a lower critical
value Uc and a linear dependence onU for large U . When calculating the staggered
magnetization as a function of a staggered magnetic fieldh for different temperatures, a
finite order parameter (finite magnetization forh = 0) and thus a stable AF solution was
already obtained for temperatures larger than the above-mentionedTc, which is a clear
indication of a first-order phase transition. We cannot exclude the possibility that this may
be an artefact of the SOPT, because such first-order transitions are not obtained within other
investigations of AF within the PAM and are usually not seen in experiment. Furthermore
we have calculated the dependence of the critical interactionUc on the hybridization, and
found strong corrections in the SOPT as compared to the Hartree result. Finally we have
calculated the f-electron density of states in the homogeneous phase and the ordered phase
and found, besides the opening of an antiferromagnetic gap (larger than the hybridization
pseudo-gap), additional fine structures in the subbands within the AF phase.
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